

Tecnologie Abilitanti per Territori Resilienti: FWA, NAAS e Network API per l'evoluzione dei servizi digitali.

IL CONTESTO DEL MERCATO TLC IN ITALIA

1

Il tema della **resilienza digitale** è legato alla capacità dei territori – soprattutto quelli a bassa densità o con conformazioni orografiche complesse – di accedere a **servizi avanzat**i in modo affidabile.

In Italia, la sfida del digital divide resta centrale: nonostante gli investimenti sulla fibra, permane l'esigenza di soluzioni complementari per garantire copertura universale.

2

La chiave non è un'unica tecnologia, ma la combinazione di fibra, FWA e satellitare.

Fibra \rightarrow infrastruttura ideale per aree urbane e densamente popolate.

Fixed Wireless Access → soluzione efficace in territori con minore densità abitativa, più rapida da implementare e più sostenibile economicamente.

Satellitare → strumento di resilienza estrema, quando né fibra né FWA risultano praticabili.

La **Calabria**, con la sua complessità morfologica, rappresenta un **laboratorio ideale** per osservare come la combinazione di tecnologie consenta di **ridurre il digital divide**.

La Calabria come caso d'uso

IL CONTESTO DEL MERCATO TLC IN ITALIA

La copertura FTTH ha raggiunto il 73,4%* delle famiglie in Italia, ma resta disomogenea: il Sud Italia, inclusa la Calabria (14ª nel ranking nazionale), è spesso sotto la media.

La principale causa di disomogeneità è un Territorio caratterizzato da complessità morfologiche: aree montuose, piccoli centri, distribuzione non omogenea della popolazione.

Questo contesto rende evidente il valore della complementarietà tecnologica.

In Calabria, solo il 17% dei civici ha come servizio prioritario la fibra FTTH, contro una media nazionale del 40%. Questo rappresenta un divario del 58%.

Il ruolo delle infrastrutture e delle API di rete:

E IL PARADIGMA DEL NETWORK AS A SERVICE

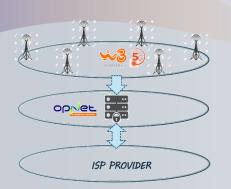
Non è sufficiente fornire connettività: bisogna renderla **programmabile**, scalabile e integrabile nei processi digitali.

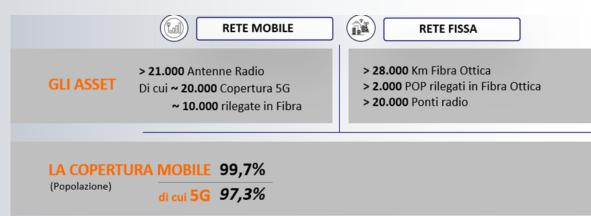
Qui si inserisce il paradigma del **Network as a Service (NaaS)**: la rete non è solo trasporto di dati, ma diventa piattaforma aperta consentendo lo slicing per la creazione di servizi personalizzati e accessibile tramite **API standardizzate**.

Alcuni esempi:

- Verifica istantanea di copertura e capacità di rete.
- Automazione dei processi di attivazione (Delivery) e manutenzione (Assurance).
- Accesso a dati di telemetria in tempo reale per monitoraggio e diagnosi.

Questo approccio consente di abilitare servizi verticali (sanità digitale, smart city, telelavoro, turismo intelligente) in territori che altrimenti rischierebbero marginalizzazione digitale.


Consolidamento e sinergie del settore



Canalizzare gli sforzi per massimizzare il risultato

Il consolidamento tra operatori permette di ottimizzare frequenze, siti radio e backbone.

L'ingresso di OpNet nel **Gruppo WindTre** ha reso disponibili oltre **21.000 BTS (8.700 5G TDD)**, creando le condizioni per un **FWA 5G scalabile e resiliente**.

Questa infrastruttura è il prerequisito tecnico per implementare soluzioni NaaS in aree difficili, coniugando efficienza di rete e sostenibilità economica.

Fixed-Wireless-Access 5G

ARCHITETTURA, SPETTRO 5G E PRESTAZIONI

FWA 4G/5G NSA → utilizzo combinato di canali 4G e 5G, fino a **300 Mbps in download e 50 Mbps in upload**.

5G DSS FDD (1800/2600 MHz) → condivisione dinamica dello spettro, utile per gestire territori a domanda variabile.

5G TDD 3600 MHz → spettro dedicato esclusivamente a connessioni 5G, con prestazioni ottimizzate per servizi avanzati.

Queste tecnologie permettono non solo accesso broadband, ma anche garanzia di qualità (QoS), elemento chiave per servizi mission-critical.

Segregazione dei dati con stack BSS OpNet

→ Permette agli operatori wholesale di mantenere isolamento logico delle proprie utenze, requisito fondamentale per scenari multi-tenant.

Installazioni gestite con system dedicati

→ Consentono di offrire servizi chiavi in mano senza duplicare infrastrutture operative, riducendo tempi di attivazione e semplificando l'onboarding.

API per copertura, Delivery e Assurance

→ Rendono possibile l'integrazione automatica con i sistemi OSS/BSS degli operatori, abilitando logiche di self-provisioning e monitoraggio proattivo.

Accesso alle telemetrie CPE

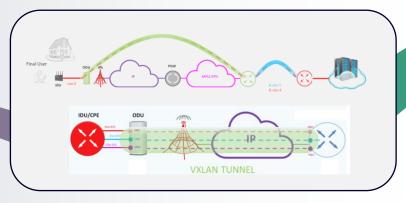
→ Consente di implementare modelli predittivi di manutenzione, analisi delle performance per singolo utente, e diagnostica remota in real time.

Introduzione del "4° Referente"

→ Aumenta la resilienza organizzativa nei processi di gestione, garantendo continuità di servizio anche in scenari critici.

OPNEL A WINDTRE COMPANY

MODELLI DI ACCESSO WHOLESALE: POSSIBILITÀ TECNICHE


FWA Livello 3 (turn-key)

- Attivazioni gestite end-to-end da OpNet.
- Apparati white-label con visibilità telemetrica al cliente →
 consente di fornire servizi broadband affidabili senza sviluppare
 infrastrutture proprie di supporto.
- Opzioni IP dinamico, statico, multi-IP → permettono di abilitare scenari di connettività diversi: dal semplice accesso consumer fino a servizi professionali o IoT.

•FWA Livello 2 (interfaccia tecnica diretta)

- Traffico cliente finale incapsulato e consegnato via E-NNI standard IEEE 802.1q, con identificazione tramite coppia S-VLAN / C-VLAN.
- Questo modello consente agli operatori di mantenere il pieno controllo su QoS, policy e servizi a valore aggiunto (VoIP, VPN, soluzioni verticali).
- Supporto a modelli Mono-CoS e Multi-CoS → fondamentale per applicazioni che richiedono prioritizzazione del traffico (es. telemedicina, videosorveglianza).

INFRASTRUTTURA COME LEVA PER RESILIENZA

La resilienza territoriale nasce da infrastrutture adattabili e da reti programmabili.

- La complementarietà tra fibra, FWA e satellitare, integrata con approcci NaaS e API di rete, consente di superare i limiti geografici e abilitare servizi digitali ovunque.
- In territori complessi come la Calabria, queste soluzioni rappresentano non solo un modo per ridurre il digital divide, ma una vera e propria architettura abilitante per comunità resilienti.